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Abstract--The Stokes motions of three-dimensional screw-sensed slender particles in a homogeneous shear 
field are investigated, including the effects of buoyancy. Conclusions are drawn about the possibility of 
achieving a separation of mixtures of right- and left-handed particles. The linearity of the Stokes equations 
allows complex flows to be solved by adding the effects of the several terms which describe the flow in 
which the particle is immersed. The homogeneous shear flow considered here consists of three such terms; 
solutions for a series of 12 unit motions are sufficient to determine the hydrodynamic resistance tensors. 
The forces and torques experienced by screw-sensed particles are calculated from these 51 resistance 
tensors, using slender-filament theory. The results allow an estimate of the range of buoyancy parameters 
for which gravitational sedimentation can be neglected. The fundamental component of the particle 
motion is a rotation, at approximately the same angular velocity as that of the fluid. Superimposed on 
this are variations, of large period, in the particle orientation. A phase plane analysis is used to find the 
terminal orientations. Very long calculation times are required for the phase portrait. An approximate 
method based on azimuthally-averaged equations is developed to avoid the requirements for long time 
integration. 
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1. I N T R O D U C T I O N  

The purpose of this paper is to provide a better understanding of the low Reynolds number 
motion of three-dimensional slender particles in a homogeneous shearing viscous liquid. 
The particles studied have a specific dextral or sinistral filament, and have no planes of 
symmetry. 

1.1. Slender-filament theory 
Analysis of the Stokes resistance of slender filaments dates back many years (Burgers 1938; 

Brenner 1966; Batchelor 1970; Tillett 1970; Keller & Rubinow 1976). A very complete formulation 
was presented by Johnson (1977, 1980), who investigated the families of slender shapes that could 
be represented by distributing singular solutions of the Stokes equations along the filament 
centerline. This set of singular solutions is quite extensive, and their functional forms are complex. 
However, they become considerably simpler in the limit where the filament diameter d becomes 
small compared to its length 2l so that E = d/21 becomes small. 

Under such a formulation, the boundary condition at the particle surface Sp becomes an integral 
of  the singularities along the filament centerline, and the surviving singularities contain only the 
Stokeslet strength ~: 

rJ ds. [ll 

Johnson carried out an asymptotic evaluation of this integral for the slender limit.~ His result 
displays the leading (logarithmic) contribution coming from the vicinity of the point at which the 

:~This limit is referred to in the literature as slender-body theory. In the present work, we have adopted the adjective 
slender-filament, to distinguish the slenderness of the filament from that of the body into which the filament is wound, 
and which need not be slender--see figure I. 
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velocity boundary condition is being applied, plus a regular integral over the length of the particle 
centerline: 

f 
21 - s A 

Vv(s) = ~v(s)Lv + Kv[ro; at(s')] ds', 
d SA 

where the generalized eccentricity is defined by 

sA = l[1 - ~/1 - E 2] 

[21 

and 

2 
L , = 2 ( 2 L - 1 ) ,  L b = L n = 2 L + l ,  L = l n - ,  

E 

and where the integrand K~, in which v refers to the Frenet triad unit vectors (Struik 1950) ~,, ~b 
and ~n at a field point where the boundary condition is to be satisfied, is defined as 

~v(s') [~(s')'ro]rov D~o~(s) 
K,[ro; ~(s')] = - -  t- 3 Is - s'[ ' [3] 

ro r o  

in which 

D , = 2 ,  D b = D n = l .  

Here s and s'  denote the field and source points, and ro is the distance between them. 

1.2. Application to a screw-sensed particle 

The geometry of general scew-sensed particles (i.e. corkscrew particle) has the following 
centerline (figure 1): 

x = a ( s )  cosu, y = h a ( s )  sinu, z = b u ;  O<<.u<<.2nn, [4] 

s~ 

od S \ 
5- 

$1 $2  

Figure 1. Particle-fixed and space-fixed coordinate systems, and particle geometry. 
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where a(s)  denotes the coil radius at field point s, and h = 1 or h = - 1 for a right- and left-handed 
particle (RHP and LHP) respectively, and the coil pitch is 2rib. The overall length of coil consisting 
of n turns (where n need not be an integer) is 

L = 2nnb. [5] 

The helical particles considered in this paper have constant coil diameter D (radius a) [see also 
Kim & Rae (1989)] and the components of  the position vector ro in the kernel Kv can be written as 

a 2 b 2 

ro, = - -  sin(u - u') + - -  (u - u'), [6a] 
C C 

rob = a[cos(u -- u') -- 1], [6b] 

ro~ = h ab [(u - u') - sin(u - u')]; [6c] 
C 

in which u'  denotes the angle at the source point s'. 
In addition, with the help of  Taylor series expansions, we can derive the special forms of the 

integrand K, for the case where the source point coincides with the field point: 

a 

r , =  -- ~ b ( S ) ,  

1975) 

a 

K b=  -- ~ t ( s ) ,  

g ~ = 0 .  

[Ta] 

[7b] 

[7c] 

The force and torque are given by quadratures of the Stokeslet strength as (Chwang & Wu 1974, 

f; F = - 8n/l • ds'  [8] 

21 

T = -8n/~ r x a d s ' .  [9] 

and 

Kim (1987) carried out solutions of [2] following the suggestion made by Brenner (1964) by 
calculating the force and torque generated for a series of 6 cases, having unit velocity in the directions 
of each of the 6 degrees-of-freedom. The results of these calculations make it possible to identify 
all 21 second-rank tensor elements required to examine the complete range of motions of a particle 
sedimenting under gravity in an unbounded fluid which is otherwise at rest. 

We begin the study with the general equations governing the problem for the particle motion, 
and then show the calculations of hydrodynamic resistance coefficients in section 3. This is followed 
in section 4 with a study of the special case of slender-needle trajectories, to check the accuracy 
of our numerical schemes. Following this, motions of screw-shaped particles are examined. A phase 
plane analysis, including the effects of  neutral and nonneutral buoyancy, is used to find the terminal 
orientations. From these results, we draw some conclusions about the possibility of achieving a 
resolution of racemic mixtures. However, these results require long integration times. In section 
5 an approximate method is developed to minimize the computational time, and section 6 describes 
the implications of this work on the question of separation. Finally, section 7 contains some remarks 
about the applicability of this work, and a number of further studies which are now possible. 

2. F O R M U L A T I O N  OF EQUATIONS 

For the case where the particle is immersed in a constant shear flow, the Stokes problem to be 
solved is 

Vp =/IV2V, V . V = 0 ,  [10] 

LIME 17/6-.-c 
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with boundary conditions 

and 
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V = U o + t o  Xro on Sp [11] 

V ~ u = U o + r o '  G Irl~oo,  [12] 

where Uo and to denote the particle velocities, Uo is the undisturbed fluid velocity, ro is the position 
vector of a point relative to an origin at o and G (its magnitude is denoted by G) is the shear dyadic, 

G = Vull,l~oo, [13] 

which has the property I : G --- 0, where I is the dyadic idemfactor. 
Brenner (1964) has shown that in such a flow the force and torque expressions must include two 

third-rank tensors that give contributions proportional to the shear rate: 

F = - # [ K .  (Uo - Uo) + C*o" (to - too +/rF: '90] [14] 

and 

To = -/~[Co • (Uo - Uo) + no '(to - -%) + Fr: 6~], [15] 

where: the superscript t denotes the transposition operator; toj is the angular velocity of the fluid 
spin, 

tof = ½V × u; [16] 

5 ~, which is symmetric, is the rate of  strain dyadic of  the undisturbed flow, 

sf  --- ½(G + Gt); [17] 

and K, C o, and f~o are second-rank tensors which are called the translational, coupling and rotation 
tensors, respectively, evaluated at a point o affixed to the particle. The third-rank tensors/r  e and 
Fr ,  which are called by Brenner (1964) the shear-force and shear-torque triadics, are symmetric in 
their second and third subscripts, and three elements in each tensor can be set to zero in keeping 
with the incompressibility condition I : S = 0, which he refers to as the principle of indeterminacy. 
Thus, each of these triadics contains 15 independent coefficients. These resistance tensors depend 
on the particle shape, and not on the nature of the flow. Some of these will be zero for bodies of 
certain symmetry classes; Brenner discusses these categories. For  a helical coil, all 15 are, in general, 
nonzero. The numerical values of  these dyadics for various helical particle geometries were given 
by Kim (1987). Here the multiple dot products of polyadics are defined as 

A : ~  = ~Ai/kijk:Slmim 

= ~ A0~ S / , , i ~  "__~m, 

where 6kt and 6j,, represent the Kronecker delta. 
For  convenience, the following nondimensionalized variables are introduced: 

F T U toa u tara 
F = # a U ~  f, T =  , U =  = U = u ~  r #a U r ¢  f , o , , o ) f  = 

K K C C fl f] 5 = a~,  o~- F r  r S~a 
= - - ,  . . . . . .  r = - ,  S = . - - : - ,  a a 2 ' a 3 ' a 3 ' a 

u~f 
U~f = Ga. 

[18] 

With the help of the above variables, we have rewritten the hydrodynamic force and torque at 
the center of  mass of  particle, which is denoted as ( )c: 

F = - [ K .  (Uc - u¢) + C~ • ( ~  - ogf,~) + #-~ : S] [19] 

and 

T~ = - [C~. (U~ - u~) + (L" (~o - oJf,~) + ,~-~ : S]. [20] 
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3. H Y D R O D Y N A M I C  R E S I S T A N C E  T E N S O R S  

The mot ion  o f  a helical particle in a homogeneous  shear  field can be divided into 
sub-problems  as follows (Brenner 1964): let the velocity and  pressure be expressed as 

V = Vl --[- V2 -~- V 3 

and 

P = P l  + 0 2 + 0 3 ,  

where all three fields satisfy the Stokes equations,  and 

on sp 

V I - S P .  r o 

V~ (Uo - no) + (to - too × ro 

V 3 u o + tof x r o + 6 c • r o 

Ir l  ~ o o  

0 

0 

three 

[21] 

[22] 

Note  that  the first two sub-problems are var iants  o f  the p ro to type  p rob lem solved by K i m  (1987), 
i.e. the de terminat ion  o f  the Stokeslet  s trength for  a given velocity distr ibution a long the centerline. 
The  third sub-prob lem does not  contr ibute  to the force or  torque on the particle. In addit ion,  the 
solution o f  the second sub-prob lem leads to the K, C and ~ tensors. The  surface b o u n d a r y  
condi t ion for  the first unit  p rob lem can be expressed as: 

a 2 a 2 ab 
V~t, = ~ sin 2U(,_gaH --  ,9v22) --  h --e cos 2uSe~z + --c (u sin u - cos u),~13 

b 2 
- h ab (u cos u + sin u) 5¢23 - - -  use33, [23a] 

c c 

Vt,b = a cos 2 uSej~ + ha sin 2uSP~2 + bu cos u5~3 

+ hbu sin uSP23 + a sin 2 uSa22, [23b] 

) VI,. = - ~c  sin 2 u ( ~ l i  - 5:22) - h u sin u + --c cos u ~ t3  

ab (b__f a 2 ) 
+ - -  cos 2uSe12 + u cos u - - -  sin u 6e23 - h ab uS~33, [23c] 

c c c 

where 5e u represents the elements of  the shear strain dyadic. 
All 15 coefficients in the th i rd- rank tensors can be identified by solving the following 6 cases: 

Case S n $22 $33 Si2 Sl3 $23 

7 0 0 0 1 0 0 
8 0 0 0 0 1 0 
9 0 0 0 0 0 1 

10 --1 1 0 0 0 0 
11 0 - 1  I 0 0 0 
12 1 0 - 1  0 0 0 

The  first 3 are based on a homogeneous  shear flow (here the unit  vectors in space-centered 
coord ina te  are denoted  by ~1, ~2 and  ~3 with the vortici ty axis parallel to the direction o f  gravity).  
Fo r  example,  case 8 uses: 

u = r .  g3gl 

= s3~l [24] 

a n d  

s = ½(~, ~3 + ~3~i), [25] 

and the second three are based on the two-dimensional ,  rectangular  hyperbol ic  shear flow, the 
so-called four-roller flow. 
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The coefficients identified from each case are (here ~¢~jk denotes either ~ or ~r and 8~ denotes 
either F or T, and the tensor elements ~t  H 1, ~¢222 and ,~¢33a have been taken as zero, using the principle 

Case 7: 2,,~¢112 = - 8 , ,  2~¢212 = - 8 2 ,  

Case 8: 2~/113 = - 8 1 ,  2~i¢213 = - 8 2 ,  

Case 9: 2~¢123 = - 8 1 ,  2~'223= - 8 2 ,  

Case 10: 2~¢122 = - 8 1 ,  2~¢21| = 82, 

Case 11: 2~133--- 81, 2,-~t¢311 = - 8 3 ,  

Case 12: 2.~1233 = - 8 2 ,  2~¢322 = 83,. 

of indeterminacy): 

2d~'312 = - -  8 3 ,  

2"qt¢313 = - -  ' ~ 3 ,  

2"S~¢323 -~" - - ' ~ 3 ,  

The calculations were done by evaluating the integral equation using an LU-decomposition method 
with 72 segments per coil pitch on a VAX 8650 (Brown 1990). 

The transformation laws for the shear-force and shear-torque triadics at an arbitrary point p are 
given by Brenner (1964): 

~'p = ~a~'o + ½[Krop + (Krop)t] [26] 

and 

~7-p = ~o + ½[Cprop + (Cp roy)t] -rop x ~-o, [27] 

in which % is the distance from the origin to an arbitrary point p. 
Numerical results for shear-force and shear-torque triadics for helical particles having the 

geometry L/D = 1, n = 2 and d/2a = 0.1 are given in table 1 along with values of the second-rank 
tensors. The magnitudes of the shear tensor elements, ~a~relll,(122,123,213,312,313) , ~7"c122,(123,212,213,313) , referred 
to the center of mass, are about 10 times larger than the others. We have plotted these third-rank 
resistance tensors for various particle geometries in figures 2 and 3. All the elements of the third-rank 

Tab le  1. C o m p a r i s o n  o f  res is tance  tensors  be tween  helical R H P  and  L H P  for  L/D = 1, n = 2, d/2a = 0.1 

Tenso r s  R H P  L H P  

1 . 7 6 4 E + 0 1  5 . 0 2 3 E - 0 4  8.167E - 5 . 0 2 3 E - 0 4  8 . 1 6 7 E - 0 4  

K U 5.023E - 0 4  1 . 7 7 5 E + 0 1  5.368E 1.775E + 01 - 5 . 3 6 8 E  - 01 

8 . 1 6 7 E - 0 4  5 . 3 6 8 E - 0 1  1.938E - 5 . 3 6 8 E - 0 1  1 . 9 3 8 E + 0 1  

6.970E - 01 - 1.060E - 02 - 1 . 1 2 3 E  - 1.060E - 02 1.123E - 03 

Co. ~ 1 . 7 3 1 E - 0 3  - 3 . 2 3 3 E - 0 2  2.264E 3 . 2 3 3 E - 0 2  2 . 2 6 4 E - 0 1  
4 . 1 0 1 E - 0 3  - 1 . 7 4 9 E - 0 1  - 6 . 6 5 6 E  - 1.749E - 01 6,656E - 01 

2 . 9 5 5 E + 0 1  1.627E - 03 - 2 . 0 5 7 E  - 1 . 6 2 7 E  - 03 - 2 . 0 5 7 E  - 02 

fl¢,u 1.627E - 03 2.942E + 01 2.581E 2.942E + 01 - 2 . 5 8 1 E  + 0 0  
- 2 . 0 5 7 E  - 0 2  2.581E + 00 2.690E - 2 . 5 8 1 E  + 0 0  2.690E + 0!  

"~-c,ijk 

2.053E - 01 3.339E - 0 4  6.002E 

3.339E - 0 4  - 1.244E - 01 - 2 . 3 2 1 E  
6 . 0 0 2 E - 0 3  - 2 . 3 2 1 E  - 01 - 8 . 0 9 7 E  

- 2 . 7 5 3 E - 0 4  9 , 8 5 6 E - 0 2  2.959E 
9.856E - 02 - 1 , 3 5 0 E  - 0 3  - 1 . 1 1 5 E  
2.959E - 01 - 1,115E - 0 4  1.625E 

3 . 7 7 2 E - 0 3  - 2 . 1 8 8 E  - 01 3.124E 
- 2 . 1 8 8 E  - 0 1  4.381E - 0 3  - 2 . 0 8 4 E  

3 . 1 2 4 E - 0 1  - 2 . 0 8 4 E - 0 3  - 8 . 1 5 3 E  

- 5 . 9 1 0 E  - 01 2 . 8 5 1 E - 0 3  4.577E 
2.851E - 03 - 4 . 6 8 2 E  + 0 0  - 3 . 6 0 5 E  
4.577E - 03 - 3 . 6 0 5 E  + 0 0  5.273E 

- 8 . 7 9 1 E - 0 4  2.461E + 0 0  3.652E 
2.461E + 0 0  - 5 . 9 3 1 E  - 0 3  3.637E 
3.652E + 00 3.637E - 03 6.810E 

3 . 7 9 5 E - 0 2  - 5 . 2 7 5 E - 0 2  - 1 . 7 9 4 E  
- 5 . 2 7 5 E - 0 2  3 . 8 4 4 E - 0 2  - 2 . 0 5 6 E  
- 1 . 7 9 4 E  + 0 0  - 2 . 0 5 6 E  - 02 - 7 . 6 4 0 E  

- 0 4  1.764E + 01 

- 01 - 5 . 0 2 3 E  - 0 4  
+ 01 8.167E - 0 4  

- 03 - 6 . 9 7 0 E  - 01 
- 01 1.731E - 03 

- 0 1  - 4 . 1 0 1 E  - 03 

- 0 2  2 . 9 5 5 E + 0 !  

+ 0 0  - 1.627E - 03 
+ 01 - 2 . 0 5 7 E  - 02 

- 03 2.053E - 01 
- 01 - 3 . 3 3 9 E  - 0 4  
- 02 6.002E - 03 

- 01 2.753E - 0 4  
- 0 4  9.856E - 02 
- 03 - 2 . 9 5 9 E  - 01 

- 0 1  3 . 7 7 2 E - 0 3  

- 03 2.188E - 01 
- 03 3.124E - 01 

- 0 3  5 . 9 1 0 E - 0 1  
+ 0 0  2.851E - 03 
+ 0 0  - 4 . 5 7 7 E  - 03 

+ 0 0  - 8 . 7 9 1 E  - 04 
- 03 - 2 A 6 1 E  + 0 0  
- 03 3.652E + 0 0  

+ 0 0  - 3 , 7 9 5 E  - 02 
- - 0 2  - 5 . 2 7 5 E  - 02 
- 02 1.794E + 0 0  

- 3.339E - 04 6.002E - 03 
- 1.244E - 01 2.321E - 01 

2.321E - 01 - 8 . 0 9 7 E  - 02 

9 . 8 5 6 E - 0 2  - 2 . 9 5 9 E - 0 1  

1.350E - 03 - 1.115E - 04 
- 1.115E - 0 4  - 1 . 6 2 5 E  - 03 

2.188E - 01 3,124E - 01 

4 . 3 8 1 E - 0 3  2,084E - 03 
2.084E - 03 - 8 . 1 5 3 E  - 03 

2.851E - 03 - 4 . 5 7 7 E  - 03 
4.682E + 00 - 3 . 6 0 5 E  + 00 

- 3 . 6 0 5 E  + 00 - 5 . 2 7 3 E  + 0 0  

- 2 . 4 6 1 E  + 00 3.652E + 00 
- 5 . 9 3 1 E -  03 - 3 . 6 3 7 E -  03 
- 3 . 6 3 7 E -  03 6 . 8 1 0 E - 0 3  

-- 5.275E + 00 1.794E + 00 
- 3.844E - 02 - 2.056E - 02 
- 2 . 0 5 6 E  - 02 7.640E - 02 
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S H E A R - F O R C E  TRIADICS 
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D i a m e t e r  R a t i o ( d / 2 a )  

Figure 2. Variation o f  the shear-force triadic elements with respect to three geometrical conditions: (a) 
L/D; (b) n; and (c) d/2a. The basic particle geometry is L/D = l ,  n = 2  and d/2a=O.l; solid 

symbo l s - -RHP,  open symbols---LHP. 

tensors vary monotonically with L/D, and d/2a, but not for variations with the number of turns 
of the coil. 

With the knowledge of these 51 scalar resistance coefficients, i.e. 6 for the translation tensor, 9 
for the coupling tensor, 6 for the rotation tensor and 15 elements for each of the shear-force and 
shear-torque triadics, the hydrodynamic force and torque on rigid particles undergoing given 
translational and rotational motions in a homogeneous shear flow are completely defined. 

Examination of table 1 shows that certain elements of the resistance tensors are, numerically, 
quite small. Some of these small terms might be exactly zero, raising the question whether the 
retention of small but nonzero effects over a long time-integration period may lead to erroneous 
results when predicting the particle motion.:~ We will discuss these effects in section 4. 

To check the accuracy of the numerical schemes being used here, we compare the resistance tensors 
for a straight rigid ellipsoidal particle with the analytical formulas (Brenner 1964). Due to the 
symmetry of an ellipsoidal particle, the coupling tensor and shear-force triadic are zero. Also, the 
slender-needle geometry can be approximated as a helical coil having a vanishing number of turns. 

~The referees have suggested that  it might be possible to show by symmetry arguments  that some of  these coefficients are 
identically zero; to date, we have been unable to provide such a proof. 
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S H E A R -  TORQUE TRIADICS 
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- 5 . 0  , , 
o . o l  o . b 2  I t t . . . . . . .  T , 0.03 0.04 0.05 o.b6 o.b7 • 0 . 0 8  0 , 0 9  0 .1  
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Figure 3. Variation of the shear-torque triadic elements with respect to three geometrical conditions: (a) 
L/D; (b) n; and (c) d[2a. The basic particle geometry is L / D =  1, n = 2  and d/2 = 0 . I ;  solid symbols - -  

RHP,  open symbols - -LHP.  

Table 2 shows a comparison of the numerical values of tensors for a slender needle whose 
equatorial diameter is one-hundredth of its length, which we have represented as a helical particle 
having the geometry L/D = 1, n = 0.0001 and d/2a = 0.01. These results show excellent agreement 
with the analytical formulas. 

In a following section, we shall show the analysis of the particle motions in a constant shear field 
using the above hydrodynamic resistance tensors. 

4, T R A J E C T O R I E S  

4.1. Equations of motion 
At low Reynolds number conditions, it is possible to neglect all particle acceleration terms after 

a short time of  order replica, where mp is the mass of the particle.:~ The resulting equations, which 
we have called the quasi-terminal equations (Kim & Rae 1989) are: 

SWe are grateful to Professors C. P. Yu  and J. D. Felske for pointing out to us that for particles of neutral buoyancy, it may 
be necessary to include here the effects of apparent mass and the viscous-history forces described by the Bassett integral. 
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Table 2. Comparison of resistance tensors for a slender needle between analytical formulas and slender-filament theory 

Tensors Brenner (1964) Slende~filament theory 

4.334 0 0 4 .334E+00 8 .025E-11 1 .692E-07 
K~ 0 4.334 0 8 .025E-11 4.334E+00 -5.389E - 0 4  

0 0 2.619 1.692E - 07 - 5 . 3 8 9 E - 0 4  2.619E+00 

-8.389E - 11 4.768E - 07 7.743E - 0 5  
Cc,~ 0 -9.537E - 07 2.910E - 10 2.384E - 0 7  

- 1 . 2 8 2 E - 0 4  9 .537E-07  0.000E + 0 0  

1.746 0 0 1.747E + 0 0  3.492E - 10 9.537E - 07 
D~,~ 0 1.746 0 4 . 6 5 7 E - 1 0  1.747E+00 - 5 . 4 8 7 E - 0 4  

0 0 0.001 9.537E - 07 -5.487E - 04 - 4 . 7 6 8 E - 0 7  

Jc,qk 

0 0 0 
0 0 0.872 
0 0.872 0 

0 0 -0.872 
0 0 0 

-0 .872 0 0 

-9 .537E - 07 - 6 . 4 0 8 E - 0 5  -2.384E - 07 
-6 .408E - 05 4.768E - 07 -8 .958E - 11 
-2 .384E - 07 -8 .958E - 11 -9 .537E - 07 

4.272E - 05 -2 .384E - 07 2.619E - 10 
- 2 . 3 8 4 E - 0 7  - 8 . 5 4 4 E - 0 5  2 .384E-07  

2.619E - I0 2.384E - 0 7  4.272E - 05 

-7 .153E - 07 5.821E - 11 1.192E - 07 
5 .821E-11 -2 .384E - 07 - 3 . 8 7 2 E - 0 5  
1 .192E-07 -3.872E - 0 5  7 .153E-07  

5 .821E-  11 - 7 . 1 5 3 E - 0 7  - 5 . 8 2 1 E -  I1 
- 7.153E - 07 5.487E - 04 8.733E - 01 
-5 .821E - 11 8.733E - 01 -5 .487E - 0 4  

5.960E - 07 - 2.744E - 04 - 8.733E - 01 
- 2.744E - 04 - 8.345E - 07 8.731E - I 1 
- 8 . 7 3 3 E -  01 8 .731E-  11 -5.960E - 07 

-4.075E - 10 4.768E - 07 2.744E - 04 
4.768E - 07 5.239E - 10 7.153E - 07 
2.744E - 04 7.153E - 0 7  5.821E - I1 

F = Y~3 [28] 

a n d  

T¢ = 0, [29] 

w h e r e  t h e  b u o y a n c y  p a r a m e t e r  Y, is p r o p o r t i o n a l  t o  t h e  r a t i o  o f  t h e  t e r m i n a l  v e l o c i t y  d u e  t o  

g r a v i t a t i o n a l  s e t t l i n g  t o  t h e  c h a r a c t e r i s t i c  s h e a r  f l o w  v e l o c i t y  

y ( m p - m f ) g .  
12Ga 2 , [30] 

in  w h i c h  mr  d e n o t e s  t h e  m a s s  o f  t h e  f lu id  d i s p l a c e d  b y  t h e  pa r t i c l e .  

F r o m  [28] a n d  [29], t h e  f o r m u l a s  o f  t h e  a n g u l a r  a n d  l i n e a r  ve loc i t i e s  o f  t h e  p a r t i c l e  c a n  be  

d e d u c e d  as:  

co c = c0f,¢ + B~. Yg3 + Pc : S 

a n d  

U¢ = LIe -Jr- R c • ¥g3 + Q¢' S, 

w h e r e  t h e  s e c o n d - r a n k  t e n s o r s  Be a n d  Rc,  a n d  t h i r d - r a n k  t e n s o r s  PC a n d  Qc a r e  d e f i n e d  as:  

Bo = [K. C~-'. nc  - C~*]-' 
a n d  

a n d  

a n d  

Re = - C~-' • [~¢" B~;  

P~ = Be .  ( # ~  - K .  C / - l .  ~ - c )  

Qc = [C~'. D4 -J. C¢ - K ] - ' .  ( ,~¢ -  C~-'. a~-' • , ~ ) .  

[311 

[32] 

[33] 

[34] 

[351 

[36] 
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As Kim (1990) has shown, the elements of  dyadics Bc and R~ for both fight- and left-handed 
particles have the same sign symmetries as the coupling and translational (or rotational) tensors, 
respectively. In addition, the elements of triadics Pc and Q~ are symmetric in their second and third 
indices. For RHP  and LHP the elements of  these third-rank tensors have the same sign symmetries 
as the shear-torque triadic and shear-force triadic, respectively. 

In order to define the orientation of a particle, we require the transformation between two sets 
of  coordinates (figure 4), one of  which is particle-fixed (c~, c2, ca) with origin at the center of  mass 
with unit vectors ~ ,  ~2 and ~-3, and the other space-fixed (s~, s2, ss) with unit vectors of A~ 12 and 
g3. The coordinate transformation can be expressed as a function of the Euler angles (Goldstein 
1980), i.e. azimuthal(~b), polar(0) and roll(~k) angles (see figure 4): 

c-2 = [m,j] g2 , [37] 

where the matrix [m~j] (whose inverse is equal to its transpose) is: 

mll = cos ~b cos ~b - sin th cos 0 sin ¢, 

m~2 = sin ~b cos ~k + cos ~ cos 0 sin ~/, 

m ,  = sin 0 sin ~b, 

m21 = --COS t~ sin ~k - sin ~b cos 0 cos ~b, 

m22 = - sin q~ sin ~, + cos ~b cos 0 cos ~,, 

m23 = sin 0 cos @, 

m31 = sin q~ sin 0, 

m32 = - - c o s  ~b sin 0. 

m33 = cos  0. 

[38] 

Furthermore, the rates of change of the Euler angles are: 

d~b 1 
d--z- = sin-----0 (sin ~k coc~ + cos ~/coq), [39a1 

dO 
d---T = cos ~b c% - sin ~COc2, [39b] 

dq/ cos 0 (sin ~ c0cl + cos ~c0c~); [39c] 
d---~ = c°c3 - sin-----0 

in which z represents the dimensionless time defined by 

z = Gt. [40] 

In a constant shear flow field (figure 1), in which the planes of  shear are parallel to the ss-axis 
and the linear velocity Us2 is parallel to the streamlines, the shear strain dyadic of  the undistributed 
flow is: 

1 

1 [ Dncl~l + D12~1~2 + Dts~l~s] 
= ~1 + D2,a2e, + D~2a2a2 + D23e2eq, [41] 

L + D 3 1 [ 3 c l  -I- Ds2[s~: + D3313~:3.] 

where the Di:elements can be written in a form that displays the entire azimuthal angle dependence: 

Oij = OStj sin 2q~ + DCij cos 2~b. [42] 
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and 

I 
e=-60' 

Figure 4. Configuration of the Euler angles of a right-handed helix. 

Here the elements DS, and DC, depend only on 8 and +, and are defined as: 

i 

cosz $ - cos2 8 sin* I++ -i(l +cos28)sin21// isin sin+ 

OS,= -$(l + cos2 e) sin 2* sin’ IJ - cos2 0 cos2 * + sin 28 cos 9 

f sin 28 sin * i sin 28 cos * - sin2 8 

[431 

DC, = 

i 

cos 8 sin 21j cos 8 cos 2* -sin8cos@ 

cos 8 cos 2ij -COS 8 sin 2* sin 8 sin * . WI 
-sin8cos* sin 8 sin $ 0 I 

For easier analysis, we can express the last terms of [31] and [32] as follows, where rijk denotes 
either the elements of 8,, or A?,,,: 

(r : S),i= ,,2,3j = $GSi sin 24 + GC, cos 2$), [451 

where 

and 

GCi = Till DC, 1 + r122 DC22 + Tis3 DC,, 

+ Wi12DC12 + ri13DC13 + r,~3DCd. 1471 
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Finally, the location of  the center of mass in the space-fixed coordinates is found from 

ds--!' = Uc m ,, [48] 
d ' [  ' ' 

where si and Uc,m.i denote the nondimensionalized location of the center of mass in space-fixed 
coordinates, and the translational velocity. In this paper, we have used a fourth-order Runge-Kutta  
scheme to find the orientation and location of the particles. 

4.2. Trajectories and phase plane diagram 

As a check on our  methods  o f  integrating the 6 degrees-of-freedom motions,  we calculated the 
mot ion  of  a rigid ellipsoid o f  revolution. A compar ison of  our  results with the analytic solution 
o f  Jeffrey is given in Kim (1990); the compar ison is excellent, and leads us to conclude that  our  
numerical methods  are accurate. 

We now consider a screw-sensed particle having constant  coil radius a and having the geometry 
L/D = 1, n = 2 and d/2a = 0.1. First, the trajectories o f  a neutral ly-buoyant  particle are plotted 
in figures 5 and 6 with tho/0o/¢o = 0 ° / - 9 0 ° / - 9 0  °. The Euler-angle histories show two different 
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Figure 6. Center-of-mass histories of neutrally-buoyant RHP and LHP with an initial condition 
¢o/0o Ako = 0°/- 90°/- 90°- 

periods; one a short-period oscillation (here called the primary oscillation) whose period is 
proportional to 2n/G; the other a long-period oscillation (secondary oscillation) with small 
deviations from the initial values (except for the azimuthal angle which for both RHP and LHP 
increases linearly, with a small sinusoidal oscillation superimposed on the linear growth). 

Figure 6(b) shows a steady migration of  neutrally-buoyant RHP and LHP along the positive 
s2-direction due to the fact that its average s~-location is nonzero. The slope ~2 is essentially equal to 
the mean nonzero value of  sl. The particles oscillate about a steady drift in the negative s3-direction. 

Figures 7-10 show the histories of  nonneutrally-buoyant particles with the initial condition 
¢o 0o ~/o = 0 ° / -  9 0 ° / -  90° for various values of  Y. As with a neutrally-buoyant particle, the azimuthal 
angle histories for both screw senses show linear variations with T even at the higher Y-value shown. 
However, the polar angle shows small deviations from the initial 0o-value, except for Y = 10. This 
phenomenon can be explained by introducing a phase plane analysis, i.e. we show a plot of  0 vs 
~, for Y = 1 and Y = 100 in figures 11 and 12. These phase portraits show several critical zones; 
for an RHP; an unstable zone, 0/@ ,~ - 9 0 ° / - 9 0 ° ;  a stable zone, - 2 7 0 ° / - 9 0  ° and a saddle zone, 
for Y = 1, - 1 1 0 ° / -  180 °, for Y = 100, - 1 0 2 ° / -  180 °. We here use the term zone instead offoci 
or point because the ¢ variation spreads the motion over a narrow region. 
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F i g u r e  7. E u l e r - a n g l e  h i s t o r i e s  o f  n o n n e u t r a l l y - b u o y a n t  R H P  w i t h  v a r i o u s  b u o y a n c y  p a r a m e t e r s  f o r  

4)o/0o/@o = 0°/- 90°/- 90 °. 

We may conclude that Y ~ 10 is intermediate between shear-dominated (Y-*0) and gravitational- 
settling dominated (Y--* ~ )  values. The roll-angle histories show the same properties as do the polar 
angles, except for the case Y = 100, where for both particles, @ converges to -270  °. 

It is clear from these phase portraits that for each particle and each value of Y there are one 
or more zones that may be terminal orientations. For the strictly two-dimensional phase planes 
discussed in Kim (1987) and Kim & Rae (1989), every point in the plane was connected to one 
unique terminal point by the trajectory passing through it. For the present case, no such unique 
relations can be stated: most of the orientation space appears connected to only one of the terminal 
zones, but there are areas--particularly near the saddle zones--where it is difficult to predict which 
terminal orientation will result. 

These features of the motion might be symptomatic of chaotic behavior, i.e. the question 
arises whether particles starting near the saddle zones display a fractal interweaving of their 
terminal orientations. We made a limited search for this behavior, by examining a series 
of trajectories starting from the vicinity of the region 0Ab = - 7 0 0 / 0  ° for an RHP having 
Y = 100. No evidence of chaotic behavior was found, and the question has not been pursued 
further. 
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Figure 8. Euler-angle histories of  nonneutrally-buoyant LHP with various buoyancy parameters for 
~o/0o/~Jo = 0 ° / -  9 0 ° / -  90°. 

As mentioned earlier, the effects of  retaining small nonzero tensor values may lead to erroneous 
results over a long time-integration, especially in cases where the particle migration is already quite 
small. In an attempt to resolve this question, we made a series of  runs in which we set equal to 
zero all tensor elements which were in absolute value 10 -3 times smaller than the largest element 
of  that tensor. The results were qualitatively similar to those found when retaining the small tensor 
elements, i.e. the terminal orientations and the general motion characteristics noted above were 
unchanged. 

We can interpret the results for large Y-values by considering the motion to consist principally 
of  sedimentation, perturbed by a small shear. For  pure sedimentation, particles of  opposite screw 
sense will achieve terminal states in which the values of  ~3 are identical, but the value of  ~o,3 are 
opposite. For  gravitational settling, the value of  o~s3, taken from Kim (1987), is 

os 3 Igrav = s in2 0 sin 2 ~k Bc.. + sin 2 0 sin ~ cos ¢ (Bc,12 + Bc,21 ) 

+ sin 2 0 cos 2 ¢Bc,n + sin 0 cos 0 cos  ~(Bc,23 --F Bc,32) 

+ cos 2 0Bc,33 + sin 0 cos 0 sin ~k(Bc,13 + B~,3~ ), [49] 
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F i g u r e  9. Center-of-mass histories of nonneutrally-buoyant RHP with various buoyancy parameters for 
@o/0o/@o = 0 o / - 9 0 o / - 9 0  o. 

which can be written a s f ( B c )  since 0 and @ take their terminal values,  which also depend only  
on  the Bcmatr ix ,  

In a constant  shear f low field, the angular velocity reached at large time is 

¢O,,Ishe,r = 0.5 + f ( B e ) Y  + g(P¢; ~ ,  0, @), [50] 

where 

1 ~ m f :caiDl'+:¢'a2D=+"~¢'mDss "~ 
g(P¢;~, 0, if) --~2,=, a)+2(~¢,,,=D,=+~¢.i,sD,s+~¢.a, DE3) 5. [51] 

The terminal state s h o w n  in figure 12 is 0 / ~  = - 9 0 0 / - 2 7 0  ° for particles o f  either screw sense. 
This  is also the terminal or ientat ion favored for m o s t  initial orientat ions for the no-shear  case. For  
this terminal orientat ion,  only  the B¢.u e lement enters the final formula,  and it is ant isymmetric  
in h: 

¢o, 3 = 0.5 + IBc,l, IY + O(PD.  [52] 
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F i g u r e  10. C e n t e r - o f - m a s s  h i s t o r i e s  o f  n o n n e u t r a l l y - b u o y a n t  L H P  w i t h  v a r i o u s  b u o y a n c y  p a r a m e t e r s  f o r  

~bo/Oo Ak o = 0 o / -  9 0 o / -  90 o. 

The physical  in terpre ta t ion o f  this result is that  the part icle 's  angular  velocity is composed  o f  the 
fluid spin plus or  minus  the gravi ty- induced rotat ion,  and modula ted  by a relatively small 
f luctuat ion arising f rom the Pc terms. Because the element Bc, ll has the value -t- 1.338 x 10 -3, it is 
clear that  oos3 will be zero for  the value 

y = _ 0.5 +g(Pc; ¢, 0, ¢) 
[Be.ill 

= 374 + O(Pc),  [53] 

i.e. an L H P  will ul t imately sink wi thout  ro ta t ion  for  this value o f  Y, while an R H P  will ro ta te  with 
roughly twice the fluid spin. The occurrence of  this p h e n o m e n o n  is the explanat ion for  some o f  
the apparen t ly  anoma lous  behavior  seen in figures 7 and 8, where the curves for  Y = 100 were 
beginning to app roach  this threshold.  

I t  should be noted that  for  even large Y-values ( >  700, say)) the terminal  spin is dictated solely 
by gravity,  with that  due to fluid spin being a small correction.  
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Figure 11. Phase-plane diagram of helical particles for L/D = 1, n = 2, d/2a = 0.1 and Y = 1. 

5. APPROXIMATE METHOD 

A limitation of the previous phase-plane analysis is the long computational time required to find 
the terminal orientation of the particles. In particular, the period of the azimuthal motion for a 
small buoyancy parameter is very long. However, the other two Euler angles undergo only a small 
net change during each azimuthal period. 

In order to remove this short-period oscillation, leaving only the long-period motions, we average 
the Euler angles over one azimuthal revolution with respect to the s,-axis, and call the resulting 
equations azimuthally-averaged equations. 

To simplify the analysis, the time rates of change of the Euler angles may be written as 

d4 -=A+CC,sin24+D,cos24, 
dr Wal 

de 
~=B+C,sin2~+DOcos2q5 Wbl 

de x=C+C*sin2$ +D,cos24; WI 
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Figure 12. Phase-plane diagram of  helical particles for L/D = 1, n = 2, d/2a = 0.1 and Y = 100. 

in which the coefficients depend on the resistance tensors Bc and Pc and Euler angles 0 
and ¢. 

The azimuthally-averaged expression for the polar-angle variation during one azimuthal period 
P is: 

AO = .fo 0 dz 

~0 E0s 3 

f~ " B + Co sin 2~b + Do cos 2q~ 
= J + E sin 2~b + F cos 2q~ d~b. [55] 

If the polar- and roll-angle dependences of  the above coefficients are neglected, the integral can 
be carried out in closed form as 

CoE + DoF 
AO = BP + (27r - JP)  H2 , [56] 

UMF 17/6--D 



736 Y,.J. KIM and W. J. RAE 

where 

J = A  + C c o s 0 ,  E = C  0+C¢,cos0 ,  F = D  0 + D * c o s 0 ,  H = ~ ;  [57] 

and the quantity P denotes the period of  one revolution of the particle with respect to the s3-axis. 

fo 
2~ d4) 

p =  

(/)s3 

2re 
- . [58] 

As the relative importance of  gravity increases, a point is reached where the particle rotation due 
to sedimentation becomes comparable with that induced by the shear flow. At this point, it is 
possible for a particle of screw sense to settle without rotation, and azimuthal averaging is not valid 
in this range. 

Similarly, the azimuthally-averaged roll-angle variation can be expressed as 

A7 j = CP + (2x - JP) CcE + D~F H2 [59] 

If  we now consider the period P to be a continuous variable describing the long-period motion 
(t ~> 2n/G), then the aximuthally-averaged equations can be interpreted as ordinary differential 
equations, and this makes it possible to use a two-dimensional phase-plane solution. 

In order to find the terminal states, we find the loci of ®' = 0 and ~F' = 0, where the prime denotes 
d( )/dP. The intersection points of these loci represent the critical points, some of which may be 
the terminal states. The nature of these points can be determined by standard methods of nonlinear 
mechanics [see also Andronov et al. (1987)]. 

In a similar manner, the azimuthally-averaged location of the center of mass can be found from 

AS/( /=  1,2,3) = Si dr 

t '2~ U • 
= / 

~0 (-Os 3 
[60] 

where the components of the translational velocity in the space-fixed coordinates De.m, i a r e  written 
as :  

U~.m,I = [A l sin 4) + B 1 cos ~b]Y + C l sin 4) sin 2~b + D l sin 4) cos 24) 

+ E I cos 4) sin 24) + F 1 cos 4) cos 24), [61] 

U¢.m,2 = st + [A" sin 4) + B" cos 4)]Y + C" sin 4) sin 24) + D n sin 4) cos 24) 

+ E"  cos 4) sin 24) + F n cos 4) cos 24), [62] 

Uo.m,3 = [AIH]y + C "~ sin 24) + D "l cos 24); [63] 

in which the coefficients depend on Rc and Q¢ and Euler angles 0 and qJ. 
Since U¢.m, 3 is a function of sin(2n4)), the integration of $3 is written in the same form as that 

of the azimuthally-averaged Euler angles: 

C I I I E  + D n I F  
AS 3 = A lnyp + (2r~ - JP) H2 [64] 

We have been unable to find the closed-form expression for the integrals that give ASt and A$2, 
and therefore we have used a Simpson's-rule integration. The leading term in Uc.ma is sl, and it 
follows that the azimuthally averaged $2 velocity is equal to the average value of  S~, i.e. 

$~ = S, .  [65] 
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Figure 13. Asimuthally-averaged phase portraits of helical particles for LID = 1, n = 2, d/2a = 0.1 and 
Y=0. 

In figures 13-15, we show several phase portraits to check the above approximation, where the 
loci of  O ' =  0 and ~v'= 0 are plotted as circular and triangular symbols, respectively. For  a 
neutrally-buoyant RHP, there are several critical points; for instance, O/~v = - 9 0 0 / - 9 0  °, 
- 9 0 ° / - 2 7 0  ° for unstable and stable foci, respectively, and the saddle points are located at Euler 
angles of  - 65°/0 °, - 117° / -  180 °. 

On the other hand, the phase-plane diagram of  a neutrally-buoyant LHP shows a different nature 
of  the critical points: saddle points at O/~ u = - 6 5 ° / - 1 8 0  °, - 1 1 7 ° / - 3 6 0 ° ;  and stable, unstable 
foci at - 9 0 ° / -  90 °, - 90°/270 °, respectively. 

As illustrated in figure 15, the trajectories of heavier particles (Y = 100) show the gravity effect 
on particle motion. In fact, this phase portrait is very similar to that found earlier in the no-shear 
case [see also figure 13 in Kim & Rae (1989)]. It also shows the basins of attraction [Thompson 
& Stewart 1986) of  a couple of  terminal states. 

6. I M P L I C A T I O N S  FOR S E P A R A T I O N  

The calculations described above can be used to infer some conclusions about the feasibility of 
separating mixtures of  right- and left-handed helical coils. These conclusiosn are of  course tempered 
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Figure ]4. Azimutha|]y-avcragcd phase portraits of hdica| partic|cs for LID = L, n = 2, d/Za = 0.l and 
Y = I .  

by the approximations made, notably the neglect of walls and of interparticle interactions, but the 
present results may be indicative of what might be expected for a dilute suspension in a 
concentric-cylinder Couette-flow apparatus whose gap dimension is large compared to the particle 
scale. 

Reliable inferences about separation require knowledge of the terminal motions of the particle, 
which are approached at large values of ~. The calculations carried out during this work suggest 
that large values of T are on the order of >~ 104. But ~ is 27t times the motion time measured in 
period of the fluid spin, i.e. 

t 27t 
x = G T = 2 n f i ;  e = --~-. 

Thus, the motion must be calculated out to some hundreds to thousands of fluid-spin cycles before 
the terminal orientations and their corresponding translational velocities are evident. 

An example of this requirement can be seen in figures 6 and 11: in terms of the concentric-cylinder 
apparatus, the displacements sl, s2 and s3 correspond, respectively, to the radial, circumferential 
and vertical directions. While the sl and s2 displacements seen in figure 6 are of no utility for 
separation, it is tempting to conclude that a long-term separation in the vertical direction is 
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F i g u r e  15. A z i m u t h a l l y - a v e r a g e d  phase  p o r t r a i t s  o f  he l i ca l  pa r t i c l es  f o r  L/D = 1, n = 2, d/2a = 0 . l  a n d  
Y =  100. 

possible. However, this steady different drift does not persist out to large times; in fact, examination 
of the 0, @ phase portrait for this motion (it is indistinguishable from that for Y = 1, shown 
in figure 11) shows that the initial orientation lies near an unstable focus and that many thousands 
of cycles later, these particles will approach terminal states having 0 = - 9 0  °, ~ =-270° .~t  
The fact that z = 500 is very early in the motion is confirmed by figure 5, which shows that 
the polar and roll angles remain within a few degrees of their initial values throughout this time 
period. 

It is at this point that the azimuthally-averaged equations are most valuable, since they enable 
identification of the terminal states with considerably less computational effort (cf. figure 11 with 
figures 13 or 14). 

~/ln this orientation, the central axis of  the coil is horizontal, with the ends of  the coil pointing down, i.e. they are located 
on the bot tom side of the coil. This is the same terminal state seen in the pure-sedimentation results (Kim & Rae 1989) 
and is different from the - 9 0  °, 90 ° orientation that the present authors'  intuition would have suggested. Thus, the 
cautionary remarks of  Kim & Rae (1989) bear repetition here: terminal orientations are quite sensitive to end effects, 
i.e. slight changes in the particle geometry near its ends can have a large effect on terminal orientation. In addition, 
it should be stressed that the only coil geometry treated in the present paper is one having an integer number of  turns, 
for which the center of  mass lies on the coil axis. A limited number of  calculations, not reported here, suggest that small 
off-axis displacements of  the center o f  mass can create large changes in the terminal orientations. 
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Figure 16. C o n t o u r  p lo t s  o f  S~ history o f  helical R H P  for L/D = 1, n = 2, d/2a = 0.1 a n d  Y = 1. 

Given that 0, ~, = - 90 °, - 270 ° is the terminal orientation (with q~ ~ const), the time-averaged 
translational velocities can then be found from figures such as 16 and 17. 
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The results shown in table 3 show that particles of  near-neutral buoyancy do not show a useful 
separation in a linear shear flow, but that a differential sedimentation rate does develop for 
nonneutrally-buoyant particles. This effect is essentially that described in [49]-[53]: at terminal 



Table  3. T ime-averaged  t r ans la t iona l  velocit ies o f  0, ~, = - 9 0  °, 
- 2 7 0  ° f o r Y = l  a n d Y = 1 0  

s; s~ s; 
Y = I  

R H P  0.0206 - 4.7275 - 7.1382 
L H P  0.0440 - 2.8155 - 7.1576 

Y =  I0 
R H P  0.0268 - 45.5734 - 69.2571 
L H P  0.0455 - 29.5294 - 73.8626 

conditions, the sedimentation velocity is that of a neutrally-buoyant particle (this part is independent 
of screw sense) plus or minus a component proportional to Y. The latter is due to the gravity-induced 
rotation and can either hinder or assist the motion, depending on the handedness. To show this 
phenomenon, we plot the time-averaged translational velocity along the sa-direction with various 
values of the buoyancy parameter Y at 0, ~/= - 9 0  °, -270  ° in figure 18. 

The general conclusion which we reach is that the flow geometry studied here is conducive to a 
separation of particles of opposite screw sense, and that the methods of analysis developed here 
facilitate the prediction of this phenomenon. Further numerical study and comparison with carefully 
designed experiments are needed to define the separative capability of this flow environment. 

7.  C O N C L U D I N G  R E M A R K S  

-~ -500 

The motions of three-dimensional screw-shaped slender filaments are examined in the presence 
of the combined effects of a linear shear flow and gravitational sedimentation. In particular, the 
particles tend to rotate in unison with the angular rotation of the shear flow, for all orientations. 
Because the fundamental period for a helical particle of unit-order length-to-diameter ratio is short 
compared to the long-term drift of the other kinematical variables, it is possible to derive a set of 
azimuthally-averaged equations containing only two of the Euler angles. This makes possible a 
phase-plane analysis comparable with that applied earlier by Kim (1987) to the problem of 
sedimentation in the absence of shear. 
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Figure  18. T ime-averaged  t r ans la t iona l  veloci ty a long  the s : d i r e c t i o n  wi th  var ious  values  o f t h e  b u o y a n c y  
pa rame te r  Y at  0, ¢, = - 9 0  °, - 2 7 0  °. 
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One of the important products of the phase-plane analysis is the ability to predict terminal 
translational velocities, and hence the potential for achieving separation of screw-sensed particles, 
without having to endure the extremely long integration times that would be required by the full 
6 degrees-of-freedom equations. The results of this analysis, applied to a limited number of cases, 
make it clear that some separations can occur, and the methods developed here can be used to 
estimate the overall separation to be expected from dilute racemic suspensions acted on by the 
combined effects of shear and gravity. Further study is required, to better define the separative 
capability of this flow geometry, as affected by conditions at the ends of the particle, by off-axis 
center-of-mass locations, and by further study of effects arising from resistance-tensor elements 
which are numerically small but nonzero. 

The solutions found above are of great value in the applications mentioned earlier, and can serve 
as the basis for the design of experiments to explore the potential for separation. They are also the 
first step in accounting for a number of more complex phenomena. In particular, effects due to 
interaction with another particle can easily be examined in the slender-filement approximation 
(Brown 1990). 

A second complication is that of motion in a nonuniform shear field including wall effects, e.g. 
Poiseuille or Dean flow fields--which, of course, need more resistance coefficients. 

Finally, any attempt to apply this work to extremely small particles must deal with the effects 
of Brownian motion, particle flexibility, end effects, thicker-filament effects and external forces such 
as those due to electric or magnetic fields. 

The problem treated in this paper is a first look at the Stokes-regime motion of a three-dimen- 
sional particle, which does not have geometrical symmetries. A great variety of phenomena are 
found, which are not only of interest in their own right, but are also the first step in illuminating 
a number of further and more complex problems. 

Acknowledgement--The authors are grateful to the referees for many useful comments on this paper. 
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